Xanthine oxidase-derived reactive oxygen species convert flow-induced arteriolar dilation to constriction in hyperhomocysteinemia: possible role of peroxynitrite.

نویسندگان

  • Zsolt Bagi
  • Zoltan Ungvari
  • Akos Koller
چکیده

We hypothesized that in hyperhomocysteinemia (HHcy), flow-induced arteriolar constriction is due to an enhanced generation of reactive oxygen and/or nitrogen species, causing an impairment of nitric oxide (NO) and prostaglandin mediation of the response. Changes in diameter of isolated, pressurized (at 80 mm Hg) gracilis muscle arterioles (diameter approximately 170 microm) from control and methionine diet-induced HHcy rats were measured by videomicroscopy. Increases in intraluminal flow (from 0 to 25 microL/min) resulted in NO- and prostaglandin-mediated dilations of control arterioles (maximum, control, 30+/-4 microm) but elicited significant constrictions of HHcy arterioles (maximum, HHcy, -32+/-3 microm), which were abolished by the thromboxane A(2) receptor blocker SQ 29,548. Intraluminal administration of superoxide dismutase plus catalase did not affect flow-mediated dilations of control arterioles, but in HHcy arterioles, it reversed the flow-induced constrictions to dilations (maximum 18+/-4 microm), which were abolished by an NO synthase inhibitor. Flow-induced constrictions of HHcy arterioles were prevented by the presence of the xanthine oxidase inhibitor oxypurinol [but not by the NAD(P)H-oxidase inhibitor diphenyleneiodonium] and by urate, a known peroxynitrite scavenger. Also, authentic peroxynitrite elicited arteriolar constrictions (-31+/-8 microm) that were eliminated by urate and SQ 29,548. Thus, we suggest that in HHcy, xanthine oxidase-derived superoxide scavenges NO released to flow, forming peroxynitrite, which promotes release of thromboxane A(2), resulting in arteriolar constriction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperhomocysteinemia-induced Pro-inflammatory and Pro- Atherosclerotic Changes in Coronary Arteries

first years in medical research, for convincing me to take the scientific road. ABBREVIATIONS Hcy: homocysteine HHcy: hyperhomocisteinemia O 2 .-: superoxide ONOO-: peroxynitrite ROS: reactive oxygen species QRT-PCR: real-time quantitative reverse transcription-polymerase chain reaction DPI: diphenyliodonium eNOS: endothelial nitric oxide synthase iNOS: inducible nitric oxide synthase SOD: supe...

متن کامل

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

NAD(P)H oxidase-derived reactive oxygen species contribute to age-related impairments of endothelium-dependent dilation in rat soleus feed arteries.

We tested the hypothesis that age-related endothelial dysfunction in rat soleus muscle feed arteries (SFA) is mediated in part by NAD(P)H oxidase-derived reactive oxygen species (ROS). SFA from young (4 mo) and old (24 mo) Fischer 344 rats were isolated and cannulated for examination of vasodilator responses to flow and acetylcholine (ACh) in the absence or presence of a superoxide anion (O(2)(...

متن کامل

O 22: Reactive Oxygen Species and Epilepsy

Seizure activity has been proposed to result in the generation of reactive oxygen species (ROS), which then contribute to seizure-induced neuronal damage and eventually cell death. Although the mechanisms of seizure-induced ROS generation are unclear, mitochondria and cellular calcium overload have been proposed to have a crucial role. We aim to determine the sources of seizure-induced ROS and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 22 1  شماره 

صفحات  -

تاریخ انتشار 2002